Werbung
Erstmalig wurde Toyota Material Handling Deutschland (TMHDE) mit der begehrten EcoVadis Platinmedaille ausgezeichnet. Mit diesem Rating gehört TMHDE zu den Top 1 % der weltweit über 100.000 bewerteten Unternehmen und bestätigt das hohe Engagement ...
Gute Nachrichten für Warentransporte sowie Be- und Entladeprozesse: Mit neuen, kompakten Doppelstockbeladern und einem Niederhubwagen will Linde Material Handling (MH) das Manövrieren unter engen Platzverhältnissen in Logistik, Handel und ...
Combilift ist bei den UK Materials Handling Association Awards in Birmingham in gleich zwei Kategorien ausgezeichnet worden: „Ergonomische Innovation des Jahres“ und „Hersteller-Produktinnovation des Jahres“. Mit den Prämierungen konnte sich der ...
Mit seiner neuesten E-Stapler-Reihe RCE 15-20 erweitert der Hamburger Intralogistikspezialist STILL seine Classic Line für Unternehmen mit gelegentlichen und moderaten innerbetrieblichen Transportaufgaben um besonders kompakte Elektrostapler. ...
Als Einmannbetrieb im Jahr 2005 gegründet, vertreibt Wardow, Onlinehändler für hochwertige Taschen und Accessoires im Premiumsegment, heute europaweit etwa 20.000 Artikel von über 140 verschiedenen Marken. Der 12sprachige Webshop verzeichnet ...
In der heutigen schnelllebigen Industrie ist die Effizienz von Prozessen entscheidend für den Erfolg eines Unternehmens. Als Anbieter von Wiegetechnik für Flurförderzeuge aus der Region Hannover bietet Kilomatic mit seinen DREXEL Industriewaagen ...
stabau baut seine Marktpräsenz weiter aus und bietet ab sofort stationäre Handlingsgeräte an. Dank jahrzehntelanger Erfahrung in der Produktion von Anbaugeräten für Gabelstapler war es für das Unternehmen eigenen Angaben zufolge ein logischer ...
Trotz des steigenden Ölpreises und der ungewissen Zukunft des Öls als 'Treibstoff' der Weltwirtschaft, wird die Suche nach Ersatzstoffen noch nicht mit der richtigen Effizienz betrieben. Dabei steht eine Technik, die umweltfreundlich und zugleich auf regenerative 'Treibstoffe' zurückgreift, eigentlich schon in den Startlöchern. Der wasserstoffbetriebenen Brennstoffzelle wird, nach Einschätzung anerkannter Fachleute in einem ausgereiften Stadium, eine ähnlich revolutionäre Rolle für die Energieversorgung im 21. Jahrhundert zugetraut, wie früher der Dampfmaschine.
Der wallisische Jurist und Physiker Sir William Robert Grove (1811 1896) legte mit der Konstruktion seines ersten Prototypen 1839 den Grundstein für die heutige Brennstoffzellentechnik. Dabei machte er sich den Umkehrprozess der Elektrolyse zu nutze. Bei der Brennstoffzelle wird, da es sich um eine exotherme Reaktion handelt, aus den Grundstoffen Wasserstoff und Sauerstoff wieder Wasser, wo
bei als Nebenprodukte Wärme und die im Wasserstoff enthaltene Energie abfallen. Der Aufbau einer Brennstoffzelle ist einfach. Platinelektroden, die in als Elektrolyt dienender verdünnter Schwefelsäure stehen, wird eine Spannung abgegriffen. Elektronenlieferanten sind an der einen Elektrode Sauerstoff und an der anderen Wasserstoff. Da die dort entstehende Spannung aber noch nicht ausreichte, schaltete auch Grove schon mehrere Brennstoffzellen zusammen.
Heutige Brennstoffzellen sind noch einfacher aufgebaut. Die Zelle besteht dabei, wie ein Sandwich, aus drei Schichten. Die erste Schicht ist die Anode, die zweite ein Elektrolyt und die dritte die Kathode. Die Elektrolytenschicht ist je nach Art der Brennstoffzelle fest, flüssig oder hat eine Membranstruktur. Mehrere Zellen werden in Reihe zu einem sogenannten 'Stack' geschaltet.
Im internationalen Vergleich gesehen, stehen rund 20 % der weltweit vorhandenen Wasserstofftankstellen in Deutschland. Ein Beispiel ist das 'Wasserstoffprojekt Flughafen München' der ARGE MUC (Arbeitsgemeinschaft Flughafen München). Hauptziele des groß angelegten Feldversuches sind
- der operative Einsatz von Wasserstoff
- die Darstellung eines geschlossenen Wasserstoffkreislaufes (Erzeugung bis zum Verbrauch)
- die Demonstration der Zuverlässigkeit die Ermittlung der Randbedingungen für einen wirtschaftlichen Einsatz
- die Entwicklung und Umsetzung sicherheitstechnischer Anforderungen im Umgang mit Wasserstoff
Von seinen Eigenschaften nimmt der Energieträger, eine Traktionsbatterie auf Blei Säure Basis als zentrales Element mit ca. 1,6t Eigengewicht Ca. 1 M3 Volumen ein. Damit ist eine Energieladung von 6oo Ah bei einer Spannung von 8o V untergebracht. Der nutzbare Energieinhalt beträgt ohne Tiefentladung ca. 40 kW/h. Im normalen Einsatz reicht dies für eine Betriebsdauer von 8 h, das heißt eine Schicht. Um möglichst aufschlussreiche und praxisnahe Resultate zu erzielen, wurde die Batterie durch ein komplettes, gleichwertiges System ausgetauscht, d.h. im Bauraum sollte, bei gleichbleibenden Leistungsdaten, die gleiche Energie verfügbar gehalten sowie alle Systemkomponenten untergebracht werden.
Die Vorteile für die Nutzung eines Brennstoffzellensystem:
• Tanken statt Laden, dadurch nur kurze
Unterbrechung des Einsatzes
• Nachtanken bei beliebigen Füllstand
• Kein Batteriewechsel
• Höhere Leistungs und Energiedichte
• Kein Schadstoffausstoß (C02)
• Erhöhung der Lebensdauer
Es fehlt lediglich der Beweis der Praktikabilität im Einsatz. Das Seriengerät muss also bis zum Ende des Projekts zeigen, das es keinen Einschränkungen unterliegt.
Gliederung des Systems
Alle Systemkomponenten finden in einem massiven Stahltrog Platz. Es gibt sechs wesentliche Teile:
Der Wasserstoffspeicher
Gespeichert ist die erforderliche Energie in Form von 2,5 kg gasförmigen Wasserstoff. Es werden zwei Tanks mit je 39 1 Volumen auf Basis eines bandagierten Aluminiumkerns verwendet.
Di Brennstoffzellenmodule
Die Umsetzung des Wasserstoffs erfolgt in PEM Modulen (Proton Exchange Meinbran). Es sind drei Module mit jeweils 6 kW Dauerleistung vorhanden. Jedes Modul enthält 4o Einzelzellen. Als Spannungsniveau ergibt sich eine Leerlaufspannung von lio V.
Der Kompressor
Zur Reaktion des Wasserstoffs wird der Sauerstoff der Umgebungsluft benötigt. Der elektrisch angetriebene, drehzahlgeregelte Luftkompressor liefert bedarfsgeregelt bis zu 100m³ pro Stunde.
Der Kühler
Der Wirkungsgrad der Umsetzung in elektrische Energie beträgt ca. 6o %. Er ist damit zwar deutlich besser als bei einem modernen Verbrennungsmotor mit ca. 40 %, es bleibt jedoch eine erhebliche Abw me abzuführen. Da aufgrund der Materialeigenschaften hier maximal 8o'C in den Modulen erlaubt werden kann,istein entsprechend großflächiger Kühler nötig.
Der Zwischenspeicher
Auf Basis von Elektrolyt Kondensatoren (sogenannten Ultra Caps) ist der elektrische Zwischenspeicher realisiert. 48 in Reihe geschaltete Kondensatoren m it je
weils 2.700 F nehmen die Bremsenergie auf und sorgen ferner für den Ausgleich bei Belastungsspitzen. Bei 112 V sind ca. 34o kW gespeichert. Nutzbar ist die Energiedifferenz zwischen lio und 72 V, äquivalent ca. 195 kJ. Dies entspricht der dreifachen Bewegungsenergie eines vollbeladenen Staplers mit einer Geschwindigkeit von ca. 16 km/h.
Das Gewicht
Mit Blick auf die geforderte Tragfähigkeit, ist das fehlende Gewicht der Bleibatterie durch Zusatzgewichte von ca. 1,2 t nachgebildet. Es gilt zwar, dass eine Tonne Stahl günstiger ist als eine Tonne Bleibatterie, jedoch ist diese Lösung für einen Serienstapler unbefriedigend. Hier sind weitere Überlegungen anzustellen, evtl. andere Dimensionierung des Gegengewichtes.
Quelle: Staplerworld 01/05